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Heat transport by turbulent Rayleigh–Bénard
convection in cylindrical samples with aspect

ratio one and larger
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We present high-precision measurements of the Nusselt number N as a function of
the Rayleigh number R for cylindrical samples of water (Prandtl number σ = 4.38)
with diameters D = 49.7, 24.8, and 9.2 cm, all with aspect ratio Γ ≡ D/L � 1 (L is the
sample height). In addition, we present data for D = 49.7 and Γ = 1.5, 2, 3, and 6.
For each sample the data cover a range of a little over a decade of R. For Γ � 1 they
jointly span the range 107 � R � 1011. Where needed, the data were corrected for the
influence of the finite conductivity of the top and bottom plates and of the sidewalls
on the heat transport in the fluid to obtain estimates of N∞ for plates with infinite
conductivity and sidewalls of zero conductivity. For Γ � 1 the effective exponent
γeff of N∞ = N0R

γeff ranges from 0.28 near R = 108 to 0.333 near R � 7 × 1010. For
R � 1010 the results are consistent with the Grossmann–Lohse model. For larger R,
where the data indicate that N∞(R) ∼ R1/3, the theory has a smaller γeff than 1/3
and falls below the data. The data for Γ > 1 are only a few percent smaller than the
Γ = 1 results.

1. Introduction
A central prediction of theoretical models of turbulent Rayleigh–Bénard convection

(RBC) in a fluid heated from below (Kraichnan 1962; Siggia 1994; Kadanoff 2001;
Ahlers, Grossmann & Lohse 2002; Grossmann & Lohse 2000) is the dependence of
the global heat transport on the Rayleigh number

R = αg�T L3/κν (1.1)

(α is the isobaric thermal expension coefficient, κ the thermal diffusivity, ν the
kinematic viscosity, g the acceleration due to gravity, �T the temperature difference,
and L the sample height) and the Prandtl number σ = ν/κ . The heat transport is
usually expressed in terms of the Nusselt number

N = QL/λ�T (1.2)

where Q is the heat-current density and λ is the thermal conductivity of the fluid
in the absence of convection. Before a quantitative comparison between theory and
experiment can be made, the results for N usually must be corrected for the influence
of the sidewall (Ahlers 2000; Roche et al. 2001; Niemela & Sreenivasan 2003) and the
top and bottom plates (Castaing & Chillà 2002; Verzicco 2004; Brown et al. 2005) to
yield an estimate of the idealized N∞.
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A model developed recently by Grossmann & Lohse (2000), based on the decompos-
ition of the kinetic and the thermal dissipation into boundary-layer and bulk contri-
butions, provided a good fit to experimental data (Xu, Bajaj & Ahlers 2000; Ahlers
& Xu 2001) for a cylindrical sample of aspect ratio Γ ≡ D/L = 1 (D is the diameter)
when it was adapted (Grossmann & Lohse 2001, referred to hereafter as GL) to
the relatively small Reynolds numbers of the measurements. However, the data were
used to determine four adjustable parameters of the model. Thus more stringent
tests using measurements for the same Γ but over wider ranges of R and σ are
desirable. A success of the model was the agreement with recent results by Xia, Lam
& Zhou (2002) for much larger Prandtl numbers than those of Ahlers & Xu (2001),
for R = 1.78 × 107 and 1.78 × 109. It is the primary aim of the present paper to extend
the range of R over which high-precision data, subject to minimal systematic errors,
are available for N∞(R). Our data span the range 107 � R � 1011 with σ = 4.38
and Γ � 1 and deviate from the Boussinesq approximation (Boussinesq 1903) by less
than a few tenths of a percent. We believe that they can serve as a benchmark for
comparison with future experimental and theoretical developments. They agree quite
well with the GL model for R � 1010, but for larger R there are deviations.

In addition to the results for Γ � 1 we present also some data for larger Γ , up to
Γ =6. We find that there is remarkably little dependence of N on Γ . For instance,
the Γ = 6 data fall only about 4 % below the Γ = 1 results.

2. Problems associated with high-precision measurements of N
One problem in the measurements of N(R) is that data with a precision of

0.1 % or so can be obtained in a given sample only over a range of R covering a
little more than a decade unless the fluid is changed. The reason is that the useful
temperature differences with conventional fluids like water are limited at the high
end to �T � 15◦C by possible contributions from non-Boussinesq effects (Boussinesq
1903) and at the low end to �T � 1◦C by thermometer resolution. For this reason
we built three sets of apparatus containing samples of diameter D = 49.7, 24.8, and
9.2 cm, all with Γ � 1 and known as the large, medium, and small apparatus or
sample respectively (Brown et al. 2005). Together the data obtained with these span
the range 107 � R � 1011.

A second experimental problem is the influence of the sidewall on the heat transport
by the fluid (Ahlers 2000; Roche et al. 2001; Verzicco 2002; Niemela & Sreenivasan
2003). Because of the nonlinear temperature profile in the wall adjacent to the thermal
boundary layers in the fluid, the heat entering (leaving) the wall at the bottom (top)
can be much larger than an estimate based on a constant temperature gradient. In
the present work we substantially reduced this problem by choosing a wall of small
conductivity (Plexiglas or Lexan) and a fluid of relatively large conductivity (water).
An estimate (model 2 of Ahlers 2000) indicated that the sidewall corrections for
the large and medium samples were less than a few tenths of a percent; they were
neglected. For the small sample the correction was 1.7 % for R = 2 × 107 and smaller
at larger R, and was made (Brown et al. 2005) using model 2 of Ahlers (2000). We
believe that for all the data the systematic errors due to the sidewall correction is
significantly less than 1 %.

A third problem is the effect of the finite conductivity λp of the confining top and
bottom plates on the heat transport by the fluid (Chaumat et al. 2002; Verzicco 2004;
Chillà et al. 2004a). We investigated this effect experimentally (Nikolaenko & Ahlers
2003; Brown et al. 2005) by making measurements for samples of different sizes and
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No. T̄ (◦C) �T (◦C) 10−8R N N∞ No. T̄ (◦C) �T (◦C) 10−8R N N∞

1 40.009 1.957 94.3 127.0 129.3 2 40.011 3.911 188.6 157.5 161.4
3 39.984 5.917 285.0 179.4 184.8 4 40.007 7.821 377.0 195.8 202.5
5 40.007 9.764 470.7 210.1 218.0 6 40.022 11.676 563.1 222.3 231.3
7 40.039 13.589 655.7 233.5 243.6 8 39.955 15.688 754.8 243.7 254.9
9 39.901 17.729 851.4 253.4 265.6 10 39.887 19.705 945.8 261.8 274.9

11 40.041 6.783 327.3 187.5 193.5 12 40.062 4.791 231.4 167.9 172.5
13 40.056 2.849 137.6 142.8 145.9 14 39.963 2.543 122.4 137.5 140.3
15 39.944 1.595 76.7 118.5 120.4 16 39.923 19.623 943.0 261.7 274.7
17 39.921 19.627 943.2 261.6 274.7 18 39.929 5.048 242.7 170.6 175.4
19 39.970 1.050 50.6 104.6 106.0 20 39.999 9.775 471.1 210.3 218.2
21 39.998 9.782 471.4 210.3 218.3 22 40.016 0.962 46.4 101.8 103.1
23 40.015 0.963 46.4 101.9 103.2 24 39.904 19.666 944.5 261.7 274.8
25 39.963 2.539 122.2 137.6 140.4 26 40.000 1.485 71.5 116.3 118.1
27 40.011 1.954 94.2 127.0 129.2 28 40.011 1.955 94.3 126.9 129.2
29 40.010 1.954 94.2 126.9 129.1 30 39.993 1.005 48.4 103.1 104.4
31 39.859 21.687 1040.0 269.4 283.3 32 39.971 3.988 192.0 158.4 162.4

Table 1. Results for Γ = 0.982, run 2 from the large apparatus (D = 49.7 cm). In tables 1 to 7
two points are listed per line, and they are numbered in chronological sequence.

aspect ratios, each with copper plates (λp = 391 Wm−1 K) and with aluminium plates
(λp =161 Wm−1 K). For the large and medium apparatus a small difference between
the data sets enabled us to derive a correction factor. When applied to the data
taken with the copper plates it yielded an increase of less than 5% for the large and
less than 1 % for the medium apparatus and gave a good estimate of the idealized
N∞. For the small apparatus the results obtained with copper and aluminium plates
agreed with each other.

3. Results
3.1. The data

The measurements were made at a mean temperature of 40◦C, where
σ = 4.38, κ =1.52 × 10−7 m2 s−1, ν = 6.70 × 10−7 m2 s−1, α = 3.88 × 10−4 K−1, and λ=
0.630 Wm−1 K. We never observed long transients like those reported by Chillà et al.
(2004b) for Γ = 0.5 (see Brown et al. 2005). On occasion we tilted the apparatus by
2◦, and within our resolution of 0.1 % found no effect on N.

The results for N and N∞ are given in tables 1 to 7 and are shown on logarithmic
scales in figure 1(a). With greater resolution they are shown in the compensated form
N/R1/3 in figure 1(b). The results for Γ = 0.982 in table 1 are not the same as those
reported previously (run 1, Nikolaenko et al. 2005 table 4; those results for N and
N∞ should be reduced by 0.5 % because of an error in the area used in the original
data analysis). They were taken in a second experiment (run 2) after the sample
had been taken apart and re-assembled. Likewise, there are two separate runs for
Γ = 0.967 in the small apparatus (table 3) and for Γ = 1.506 in the large apparatus
(table 4). Within a given run the measurements were reproducible within one or two
tenths of a percent (see, for instance, points 17 and 24 in table 1). The two runs for
Γ = 1.506 (table 4) agree within their scatter of about 0.1 %. On the other hand, the
two runs with the large apparatus for Γ = 0.982 (table 1 and Nikolaenko et al. 2005
table 4), as well as the two runs from the small apparatus (table 3), differ from each
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No. T̄ (◦C) �T (◦C) 10−8R N N∞ No. T̄ (◦C) �T (◦C) 10−8R N N∞

1 39.985 2.002 11.3 66.5 66.6 2 40.014 2.437 13.7 70.5 70.6
3 40.003 3.147 17.7 76.0 76.2 4 39.968 4.005 22.6 81.7 81.9
5 39.987 4.951 27.9 87.2 87.5 6 39.973 6.202 34.9 93.3 93.7
7 39.994 7.679 43.3 99.6 100.1 8 39.946 9.731 54.8 107.0 107.6
9 39.956 11.862 66.8 113.7 114.5 10 39.928 14.259 80.2 120.3 121.2

11 39.911 16.824 94.6 126.5 127.6 12 39.865 19.836 111.3 133.1 134.5
13 39.979 1.618 9.1 62.4 62.5 14 39.998 1.282 7.2 58.3 58.3
15 39.970 1.041 5.9 54.8 54.9 16 39.968 0.845 4.8 51.6 51.6
17 39.967 0.650 3.7 47.7 47.7 18 39.989 0.507 2.9 44.4 44.5
19 39.954 22.581 127.1 138.7 140.2 20 39.959 23.539 132.6 140.4 142.0
21 39.948 25.499 143.5 143.9 145.6 22 39.942 28.420 159.9 148.7 150.7
23 39.943 31.330 176.3 153.2 155.4 24 39.936 34.193 192.4 157.4 159.7
25 39.944 37.110 208.9 161.2 163.7 26 39.960 39.968 225.1 164.8 167.5

Table 2. Results for Γ = 1.003 from the medium apparatus (D =24.84 cm).

No. T̄ (◦C) �T (◦C) 10−6R N N∞ No. T̄ (◦C) �T (◦C) 10−8R N N∞

1 39.995 0.571 18.46 20.68 20.33 2 39.995 0.721 23.34 22.13 21.76
3 39.995 0.914 29.58 23.86 23.47 4 39.995 1.160 37.53 25.51 25.11
5 39.995 1.473 47.64 27.35 26.94 6 39.995 1.871 60.52 29.28 28.86
7 39.995 2.378 76.92 31.31 30.91 8 39.995 3.025 97.85 33.57 33.13
9 39.995 3.846 124.44 35.93 35.50 10 39.996 4.894 158.35 38.44 38.00

11 39.996 6.229 201.52 41.17 40.71 12 39.996 7.927 256.49 44.02 43.55
13 39.998 10.092 326.53 47.08 46.60 14 39.999 12.848 415.73 50.35 49.87
15 39.999 16.357 529.28 53.97 53.49 16 40.002 20.823 673.87 57.80 57.30
17 40.035 26.550 860.19 61.92 61.41 18 40.054 33.658 1091.23 66.23 65.71
19 40.025 33.727 1092.34 66.37 65.85 20 40.021 35.710 1156.37 67.41 66.90
21 40.051 37.630 1219.84 68.45 67.93 22 40.080 39.579 1284.33 69.41 68.90

1 39.996 0.636 20.58 21.23 20.88 2 39.996 1.026 33.21 24.44 24.06
3 39.997 1.660 53.70 28.13 27.72 4 39.999 2.691 87.08 32.23 31.81
5 40.002 4.348 140.72 37.00 36.56 6 40.007 7.044 227.98 42.43 41.98
7 40.008 11.433 370.05 48.69 48.19 8 40.018 18.527 599.87 55.89 55.39
9 40.049 30.001 972.45 64.19 63.68 10 40.065 39.567 1283.28 69.68 69.16

Table 3. Results for Γ = 0.967 from the small apparatus (D = 9.21 cm). Top section: run 1.
Bottom section: run 2 after the sample had been taken apart and re-assembled.

other by a few tenths of a percent, but by no more than expected possible systematic
errors.

The results for Γ � 1 from the small, medium, and large samples fall on nearly
continuous smooth curves, but close inspection shows that there are small systematic
offsets. The data lie close to the GL model (solid line). It is remarkable that the
Γ > 1 data come so close to the Γ � 1 results. For instance, the Γ = 6 values are
only about 4 % below the Γ � 1 measurements. One assumes that the large-Γ sample
had a much more complex large-scale-flow structure than the single circulating roll
expected to exist for Γ =1. Apparently this has only a very modest influence on the
heat transport.

In figure 2 we compare the present results with previous measurements for Γ � 1
and σ close to 4. Data for N obtained using acetone (σ = 3.96) are shown as open
diamonds (Xu et al. 2000). The corresponding results obtained after a correction for
the sidewall conductance (model 2, Ahlers 2000) are given as solid diamonds. One
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No. T̄ (◦C) �T (◦C) 10−8R N N∞ No. T̄ (◦C) �T (◦C) 10−8R N N∞

1 39.901 17.562 233.67 164.7 172.6 2 40.012 15.429 206.09 158.5 165.7
3 39.898 13.727 182.62 152.6 159.2 4 39.986 11.633 155.24 145.1 151.0
5 39.956 9.763 130.14 137.4 142.6 6 39.959 7.837 104.48 128.4 132.8
7 40.089 5.663 75.85 116.2 119.7 8 39.984 3.928 52.42 103.6 106.2
9 40.010 1.939 25.90 83.5 85.0 10 39.970 1.041 13.88 69.3 70.2

11 39.959 3.006 40.08 95.4 97.5 12 40.031 4.803 64.19 110.3 113.3
13 40.252 6.302 84.89 120.4 124.2 14 39.905 17.563 233.71 164.6 172.4
15 39.944 8.837 117.75 132.9 137.7

1 39.822 19.669 260.43 170.5 179.1 2 39.827 17.730 234.80 165.3 173.3
3 40.025 13.517 180.25 152.1 158.6 4 41.676 12.258 172.99 150.4 156.8
5 40.083 7.623 101.86 127.5 131.8 6 39.973 5.900 78.53 117.6 121.2
7 40.005 3.901 51.98 103.5 106.1 8 40.008 1.948 25.96 83.6 85.1
9 40.051 2.838 37.88 93.8 95.8

Table 4. Results for Γ = 1.506 from the large apparatus (D = 49.7 cm). Top section: run 1.
Bottom section: run 2 after the sample had been taken apart and re-assembled.

No. T̄ (◦C) �T (◦C) 10−6R N N∞ No. T̄ (◦C) �T (◦C) 10−8R N N∞

1 40.012 1.944 1097.6 63.86 65.06 2 39.993 3.932 2218.8 79.11 81.17
3 40.104 5.660 3206.3 88.60 91.31 4 39.982 7.846 4426.2 97.92 101.37
5 39.981 9.789 5521.8 104.75 108.79 6 40.034 11.626 6570.7 110.63 115.22
7 39.929 13.777 7757.4 116.43 121.58 8 39.483 14.643 8116.3 117.92 123.23
9 39.977 10.767 6072.7 107.91 112.24 10 40.056 6.732 3807.7 93.38 96.47

11 40.045 4.802 2715.1 84.25 86.66 12 39.966 3.011 1697.7 72.74 74.41
13 39.972 1.041 587.2 52.83 53.55 14 39.961 17.593 9917.0 125.58 131.70

Table 5. Results for Γ =2.006 from the large apparatus (D = 49.7 cm).

No. T̄ (◦C) �T (◦C) 10−6R N N∞ No. T̄ (◦C) �T (◦C) 10−8R N N∞

1 39.990 17.576 2937.8 85.32 89.59 2 40.007 17.578 2939.7 85.40 89.68
3 40.100 15.454 2592.9 82.13 86.04 4 39.974 13.743 2295.8 79.17 82.76
5 40.062 11.622 1947.5 75.26 78.47 6 39.978 9.839 1643.8 71.42 74.26
7 40.030 5.839 977.3 60.99 62.94 8 40.002 3.928 656.9 54.02 55.48
9 40.016 1.941 324.7 43.75 44.61 10 39.974 1.040 173.8 36.41 36.94

11 40.063 2.830 474.2 48.99 50.14 12 40.054 4.807 805.2 57.47 59.17
13 40.283 6.311 1065.7 62.65 64.74 14 39.987 8.846 1478.4 69.18 71.82

Table 6. Results for Γ =3.010 from the large apparatus (D = 49.7 cm).

sees that in this case the wall correction is quite large, reaching about 8% for R = 108

(no plate correction was required in this case, see Brown et al. 2005). Nonetheless
the corrected data for N∞ are in excellent overall agreement with the present results.
The open squares with solid dots at their centres represent the results of Xia et al.
(2002) using water with σ = 4.29. Up to R � 109 they agree extremely well with the
present measurements. For larger R they are slightly lower, presumably because of
the influence of the finite plate conductivity. Also shown are data from Goldstein
& Tokuda (1979). When corrections for the finite plate conductivity (which had not
been made) and the difference in σ are considered, they may be regarded as consistent
with the present results.
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No. T̄ (◦C) �T (◦C) 10−6R N N∞ No. T̄ (◦C) �T (◦C) 10−8R N N∞

1 40.000 19.734 412.4 46.09 48.62 2 39.977 17.804 371.8 44.74 47.11
3 39.402 16.991 347.7 43.83 46.09 4 40.134 13.567 284.9 41.32 43.31
5 40.058 11.727 245.6 39.58 41.37 6 40.054 9.781 204.8 37.51 39.10
7 40.137 7.637 160.4 34.95 36.30 8 40.015 5.920 123.8 32.38 33.51
9 40.032 3.909 81.8 28.73 29.57 10 40.019 1.944 40.7 23.62 24.14

11 40.071 2.839 59.5 26.26 26.94 12 40.085 4.791 100.4 30.49 31.47
13 40.070 6.800 142.5 33.72 34.96 14 40.051 3.375 70.7 27.55 28.31

Table 7. Results for Γ = 6.020 from the large apparatus (D = 49.7 cm).
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Figure 1. (a) The Nusselt number N∞ as a function of the Rayeigh number R on logarithmic
scales. (b) The reduced Nusselt number N∞/R1/3 on a linear scale as a function of the
Rayeigh number R on a logarithmic scale. Stars: Γ = 0.982, D = 49.7 cm, run 1 (from
Nikolaenko et al. 2005, corrected for a 0.5 % error in the cross-sectional area of the sample).
Open circles: Γ = 0.982, D = 49.7 cm, run 2. Solid circles: Γ = 1.003, D = 24.84 cm. Open
squares (up-pointing triangles): Γ = 0.967, D = 9.21 cm, run 1 (run 2). Open down-pointing
triangles: Γ = 2.006, D = 49.7 cm. Open diamonds: Γ = 3.010, D = 49.7 cm. Solid squares:
Γ = 6.020, D = 49.7 cm. Solid line: the model of GL for Γ = 1 and σ = 4.38.

3.2. Strictly Boussinesq data for Γ � 1

The influence of departures from the Oberbeck–Boussinesq approximation (OBA)
(Boussinesq 1903) was considered by various authors. Most recently Niemela &
Sreenivasan (2003) (NS) examined the issue in considerable detail in terms of various
fluid properties. Unfortunately at present we have no theoretical criteria to decide
whether a given variation over the applied temperature difference of a given property
will affect N significantly. Here we provide some insight into this problem from
measurements with samples of different sizes but the same Γ .
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Figure 2. The reduced Nusselt number N∞/R1/3 or N/R1/3 on a linear scale as a function
of the Rayeigh number R on a logarithmic scale for Γ � 1. Stars (open circles): N∞/R1/3 for
Γ = 0.982, D = 49.7 cm, run 1 (run 2). Solid circles: N∞/R1/3 for Γ = 1.003, D =24.84 cm.
Open squares (triangles): N∞/R1/3 for Γ = 0.967, D = 9.21 cm, run 1 (run 2). Open diamonds:
N/R1/3 obtained with acetone (σ =3.96, Xu et al. 2000) for Γ = 1.004 and D = 8.74 cm. Solid
diamonds: N∞/R1/3 obtained from the acetone measurements after correction for the wall
conductance (Ahlers 2000). Open squares with solid dots: N/R1/3 obtained by Xia et al. (2002)
using water with σ = 4.29. Open circles with solid dots: N/R1/3 obtained by Goldstein &
Tokuda (1979) using water with σ � 6.2. Solid line: the model of GL for Γ = 1 and σ =4.38.

Where they overlap, there is a small systematic offset between the Γ � 1 data from
the small sample, run 2, on the one hand and the medium sample on the other.
A similar offset exists between the data from the medium sample, and the large
sample run 2. These offsets are well within possible experimental systematic errors.
In order to obtain a single internally consistent data set spanning the entire range
107 � R � 1011, we shifted the data for N∞ from the small sample, run 2, downward
by 0.3 %. We also shifted the medium-sample data upward by 0.6 %, and those from
the large sample, run 2, downward by 0.3 %. The result is shown by the lower sets of
data (displaced downward by 0.0025 for clarity) in figure 3. The results from all three
samples now merge smoothly into each other. We can then attribute the deviations of
the small-sample data at their largest values of R from the medium-sample data to
deviations from the OBA. A similar situation prevails with respect to the deviations
of the medium-sample data from the large-sample results for R � 1010.

The upper set of data in figure 3 (plotted without any vertical shift) consists only
of those points, taken from the lower sets, that fall within approximately 0.2 % of
a smooth, continuous line through all the results. In table 8 we give these points in
numerical form. We regard these results as conforming ‘strictly’ to the OBA. They are
our best estimate of N∞ for σ = 4.38 and 107 � R � 1011, and constitute the primary
result of our work.

3.3. The effective exponent γeff of N∞(R)

A power law N∞ = N0R
γeff was fit to the data for N(R) in the strictly Boussinesq

range (table 8) within a sliding window covering half a decade of R. The results
for γeff are shown in figure 4. Near R = 108 one sees that γeff has a value close to
2/7 � 0.286, the result of early theories (see, for instance, Siggia 1994). With increasing
R it increases linearly with log(R) within experimental error, reaching the large-R
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Figure 3. The reduced Nusselt number N∞/R1/3 on a linear scale as a function of the
Rayeigh number R on a logarithmic scale. Open circles: Γ = 0.982, D = 49.7 cm, downshifted
by 0.3 %. Solid circles: Γ = 1.003, D = 24.84 cm, upshifted by 0.6%. Open triangles:
Γ = 0.967, D = 9.21 cm, run 1, downshifted by 0.3%. Open squares: Γ = 0.967, D =9.21 cm,
run 2. Lower set: all data, moved down by 0.0025. Upper set: data that conform ‘strictly’ to
the Boussinesq approximation. Dashed line: the model of GL for Γ = 1 and σ = 4.38.

10−8R N∞ 10−8R N∞ 10−8R N∞ 10−8R N∞ 10−8R N∞

0.0921 16.55 0.1160 17.70 0.1464 18.95 0.1846 20.27 0.2334 21.69
0.2958 23.40 0.3753 25.04 0.4764 26.86 0.6052 28.78 0.7692 30.79
0.9785 33.04 1.2440 35.39 1.5830 37.86 2.0150 40.59 2.5650 43.42
3.2650 46.46

0.1285 18.63 0.2058 21.23 0.3321 24.44 0.5370 28.13 0.8708 32.23
1.4070 37.00 2.2800 42.43 3.7010 48.69

2.857 44.72 3.661 48.00 4.763 51.95 5.864 55.19 7.227 58.66
9.119 62.88 11.283 66.96 13.749 71.07 17.749 76.66 22.561 82.44

27.906 88.01 34.944 94.29 43.297 100.67 54.777 108.30 66.792 115.21
66.792 115.21

46.36 102.79 46.42 102.90 48.42 104.11 50.55 105.63 71.55 117.77
76.73 120.02 94.20 128.84 94.20 128.75 94.26 128.78 94.33 128.87

122.18 139.94 122.39 139.84 137.57 145.40 188.56 160.89 192.00 161.87
231.37 172.01 242.66 174.83 284.99 184.23 327.32 192.89 376.98 201.89
470.65 217.34 471.05 217.50 471.35 217.56 563.10 230.58 655.73 242.84
655.73 242.84

Table 8. Boussinesq results for Γ = 1. From top to bottom, the sections are for the small
sample (run 1), small sample (run 2), medium sample, and large sample (run 2).

asymptotic value γeff = 1/3 of the GL model at the finite value R0 � 7 × 1010. Precision
measurements conforming to the OBA for Γ = 1, σ = 4.4 and a wider range of R

above R0 are needed to determine whether γeff will remain at 1/3.
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Figure 4. Effective exponent γeff of N∞, determined from a power-law fit over a sliding
window of half a decade in the strictly Boussinesq range, as a function of R. Dotted line:
γeff = 1/3. Solid line: result of the GL model.
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Figure 5. N/R1/3 (Solid symbols) and Nσ 0.044/R1/3 (open symbols) as a function of R on
logarithmic scales for the present data (circles) and those of NS (squares).

As was seen in figure 3, the GL model is in reasonable agreement with the
experimental results for N(R) up to R � 1010. However, for the model γeff increases
somewhat more slowly with log(R) (solid line in figure 4) and reaches 1/3 only in
the limit as R → ∞ whereas the experimental γeff becomes equal to 1/3 at the finite
R0 � 7 × 1010.

The result γeff � 1/3 was obtained before by Goldstein & Tokuda (1979). However,
they simultaneously fitted all their data, regardless of Γ , over the range 5 × 108 �
R � 3 × 1011 to a power law, and found γeff � 1/3 over the entire range. This is not
in agreement with our results for Γ =1 which yield an R-dependent γeff.

An exponent close to 1/3 was found also by NS in experiments for Γ = 1 using
helium gas where σ changed with R from about 1 to about 3.8. Those data (open
squares) are displayed together with ours (open circles) in figure 5. Over the range
3 × 1011 < R < 1014 they can be represented by a power law with γeff = 0.354 (solid line)
(when only data for R > 1013 are fitted, one obtains γeff = 0.345). The σ -dependence of
N at constant R is not known very well. For 3.62 <σ < 5.42, Γ = 0.67, and R � 1011

we have N ∝ σ −0.044 (Nikolaenko et al. 2005). In order to see how much this could
influence the R-dependence, we also fitted the NS data for Nσ 0.044 (solid squares)
and obtained γeff = 0.365 (dashed line). The results by NS, together with ours, suggest
that γeff increases beyond 1/3 as R grows beyond 1011.
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